๐ซ The Pain Point
You have 1,000 feedback comments. You want to know what customers are talking about most? โGoodโ, โExpensiveโ, โBrokenโ, or โSlowโ? Reading 1,000 comments manually is impossible.
๐ Agentic Solution
Text Miner: Breaks down sentences into words, counts them, and visualizes the data.
Key Features:
- Stopwords: Automatically removes filler words like โtheโ, โisโ, โandโ.
- Word Cloud: Generates a visual cloud where bigger words = more frequent.
โ๏ธ Phase 1: Commander (Quick Fix)
For a quick pulse check.
Prompt:
โI have
reviews.txt. Count the frequency of each word, ignoring common English stopwords. Print the top 10 most used words.โ
Result: Top 10 buzzwords.
๐๏ธ Phase 2: Architect (Permanent Tool)
For Content/SEO Strategists.
Engineering Prompt:
**Role:** Python NLP Processor
**Task:** Create a "Keyword Frequency Analyzer".
**Requirements:**
1. **GUI:**
* Input Text box OR Upload .txt file.
* "Analyze" button.
2. **Logic:**
* Tokenize text.
* Remove English Stopwords (use `nltk` or a hardcoded list).
* Count frequency using `collections.Counter`.
* Display Top 20 keywords in a Table.
* *Bonus:* Generate a WordCloud image.
3. **Deliverables:** `keyword_tool.py`, `run.bat` (Windows), `run.sh` (Mac).
๐ง Prompt Decoding
- Stopwords: Without removing โstopwordsโ (the, is, at), your top 10 list would be useless. The prompt ensures meaningful analysis by filtering the noise.
๐ ๏ธ Instructions
- Copy Prompt -> Paste -> Run.
- Paste Text -> Analyze.